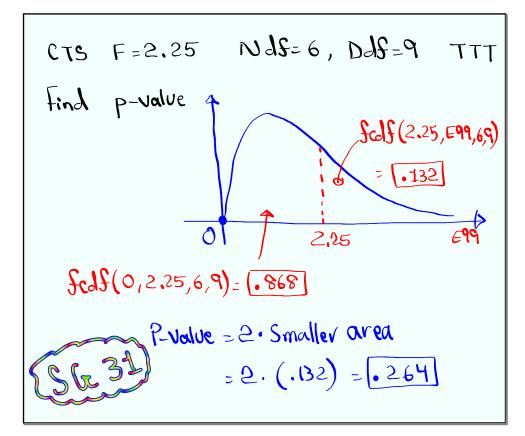


Feb 19-8:47 AM


Class QZ 11 Given: $H_1: M > 85$, n=12, $\bar{\chi}=95$, S=5J UNKNOWN 1) write Ho. Ho: M<85 2) Identify the type of Testing. H1: RTT 3) find CTS & P-Value. Name TI Command. T-Test CTS t= 6.928 -5 P-value P= 1.247 × 10

Jul 30-3:15 PM

Given the chart below Sample 1 | Sample 2 1) St > S2 / $S_{1}=6$ $S_{2}=4$ a) $Ndf=n_{1}-1=6$ 3) CTS $F = \frac{S_1^2}{2^2} = \frac{6^2}{4^2} = [2.25]$ 4) use $\alpha = .01$ to test the claim that $\sigma_1 = \sigma_2$. Ho: J= J2 Claim 2-Samp F Test S,= 6 HI: JI = JE TTT N=7 CTS F= 2.25 5,=4 P-Value P=.264 n2=10 JE + JZ TIT P-value > x .264 .01 Ho valid HI invalid VALID claim FTR the claim

Jul 30-4:49 PM

Comparing at least 3 pop. means: (SG 35) Method : ANOVA Analysis of Variance $H_0: \mathcal{M}_1 = \mathcal{M}_2 = \mathcal{M}_3 = \dots = \mathcal{M}_K$ Hy: At least one mean is different. RTT =D Ndf= K-1 K -+ # of Populations n -> Total Sample Size Dolf=n-k CTS F (STAT) TESTS ANOVAL L1,L2,L3,... P-Value P use Testing chart with p-value Method to determine the validity of HoEH1 Draw final Conclusion about the claim.

Jul 30-5:44 PM

I randomly selected same exams from		
3 different classes. Here are the Scores.		
Morning Evening Online		
75 83 95 68 88 82 88 100 80 100 70 93 100 70 90 95 90 78 90 80		
K=3 n=1+6+7=20 Ddf=n-K=17		
Morning +L1, Evening +L2, Online +L3		
use α_{\geq} . I to test the claim that all		
Pop. means are equal.		
$H_0: \mathcal{M}_1 = \mathcal{M}_2 = \mathcal{M}_3$ claim		
Hy: At least one mean is different. RTT		
CTS F=.051 STAT		
Pulalue P. 950 TESTS		
P-value > 02 (ANOVA() L1, L2, L3 Enter)		
Ho valid, Hy invalid		
valid claim => FTR The claim		

I randomly	Selected students from 4 Schools.
Here are	their ages:
Mt.SAC	Citrus Chaffey Cal Poly Pomone
23 27 18 32 20 30 25	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
K=4	Ndf=K-1= 3
n=7+5+	6 + 8 = 26 $Ddf = 1 - K = 22$
Test the (that not all pop. means
oure the	Same.
Ho: Ma= M	12= M3= M4
HI: At K	ast one mean is different. RTT
Mt.SAC -PI	-1 ANOVA(L1, L2, L3, L4)
Citrus →	L^{2} CTS F = 1.435
chaffey -	+ L3 P-Value P=,260
Cal poly	
25	.260 ' .05
(G/2 ?)	Ho valid, H1 invalid
كرني	Invalid Reject
	claim the claim

Jul 30-6:01 PM

Class QZ 12 use the table below and ANOVA to find Sample 1 Sample 2 Sample 3 CTS F=4.755 12 18 20 10 16 20 2 8 16 5 12 P-Value P=,032 15 17 18 L3 **F**5 11 ANOVA (L1, L2, L3)